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Abstract

In this study have been researched the volatility patterns of major stock market indices such as (
DJIA, S&P500, NDX, and Russell 3000) in discrete time-series 2007/2024, with a focus on
analysing the Q4/2024 volatility patterns in order to gather data points able to form empirical
bases for a potential Q1 2025 stock market drawdown, according also to seasonality effects. The
working paper provides insights into VaR violations and volatility patterns clustering between
Q3-Q4 2024 providing then a solid base and data points to achieve an expected Q1 2025
drawdown forecast. These econometrics and Volatility pattern methods can be utilised in
forecasting unforeseen stock market volatility and the feasibility of extreme fat tail losses
withstanding seasonality in stock market scenarios.

Introduction

Volatility and volatility patterns, as measures of the dispersion of asset returns, are critical
concepts in financial markets. Volatility serves as an important indicator of market risk and has
a central role in portfolio management, option pricing, and risk assessment. Accurate and
precise modelling of volatility is essential for forecasting stock market corrections, which can
have profound implications for investors and policymakers. Traditional models, such as GARCH
and ARIMA, have been widely used to capture time-varying volatility, while advanced techniques
like Extreme Value Theory (EVT) provide insights into tail risk during extreme market conditions.
However, modelling volatility remains challenging, particularly during periods of financial
stress, such as the 2008 global financial crisis and the 2020 COVID-19 market crash. This study
aims to address these challenges by leveraging a comprehensive set of volatility models to
identify patterns in Q4 2024 and forecast potential market drawdowns in Q1 2025.
The primary objective of this study is to identify volatility patterns in major market
indices—specifically the Dow Jones Industrial Average (DJIA), S&P 500 (GSPC), NASDAQ 100
(NDX), and Russell 3000 (RUA)—during Q4 2024 and use these patterns to forecast potential
market drawdowns in Q1 2025. To achieve this, we employ a combination of advanced volatility
models, including GARCH, EGARCH, ARIMA, SARIMA, and Extreme Value Theory (EVT). By
integrating these models, we aim to provide a robust framework for understanding short-term
and long-term volatility dynamics, as well as tail risk during extreme market conditions.
This research is highly relevant for a wide range of stakeholders in financial markets. For
investors and portfolio managers, accurate volatility forecasts can inform risk management



strategies, asset allocation decisions, and hedging practices. Policymakers can use these insights
to monitor market stability and implement measures to mitigate systemic risks. Furthermore, the
timeliness of this study—focusing on Q4 2024 and Q1 2025—makes it particularly valuable for
anticipating and preparing for potential market downturns in the near future. By combining
multiple volatility models and incorporating tail risk analysis, this study provides a
comprehensive approach to understanding and forecasting market behaviour.
The remainder of this paper is organized as follows. Section 2 provides a review of the relevant
literature on volatility modelling, market drawdowns, and the application of advanced
techniques such as GARCH, ARIMA, and EVT. Section 3 describes the datasets and
methodologies used in this study, including the calculation of annualized volatility, the fitting of
GARCH and ARIMA models, and the application of Extreme Value Theory (EVT) for tail risk
analysis. Section 4 presents the empirical results, including volatility patterns in Q4 2024 and
forecasts for Q1 2025. Section 5 discusses the implications of these findings for risk management
and market stability. Finally, Section 6 concludes the paper with a summary of key findings and
suggestions for future research."
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Literature Review
The ARCH and GARCH models, introduced by Engle (1982) and Bollerslev (1986), marked a
significant advancement in volatility modelling by capturing time-varying volatility and
clustering effects. However, these models assume symmetric responses to shocks, which led to the
development of EGARCH by Nelson (1991) to account for leverage effects. While
GARCH-family models excel in modelling volatility, ARIMA and SARIMA models are better
suited for capturing linear dependencies and seasonal patterns in returns. Despite their
strengths, these models often struggle to capture extreme events and tail risk, which are critical
for forecasting market drawdowns. This highlights the need for integrating multiple models to
address these limitations.
Seasonal volatility decomposition plays a crucial role in identifying periodic patterns in
financial markets, which can significantly impact volatility forecasting. Andersen et al. (2003)
demonstrated the effectiveness of seasonal decomposition in high-frequency financial data,
showing that ignoring seasonal effects can lead to biased volatility estimates. However,
traditional decomposition methods often struggle to capture complex seasonal patterns,
particularly in the presence of structural breaks or extreme events. This underscores the need for
integrating seasonal decomposition with advanced volatility models to improve forecasting
accuracy.



Value-at-Risk (VaR) has become a cornerstone of modern risk management, providing a
quantifiable measure of potential losses over a specified time horizon at a given confidence level.
Since its introduction by J.P. Morgan in the 1990s, VaR methodologies have evolved to include
historical simulation, variance-covariance, and Monte Carlo simulation. However, VaR has been
criticized for its inability to capture tail risk beyond the confidence level and its reliance on
historical data, which may not adequately reflect future extreme events. This has led to the
adoption of Expected Shortfall (ES) as a complementary measure. Despite these advancements,
accurately estimating tail risk remains challenging, highlighting the need for more robust
methods such as Extreme Value Theory (EVT).
Extreme Value Theory (EVT) provides a powerful framework for modelling extreme events, such
as market crashes and large losses, which lie outside the range of normal observations. The
Peaks-Over-Threshold (POT) method, a key approach in EVT, focuses on excesses over a
predefined threshold and models them using the Generalized Pareto Distribution (GPD). McNeil
(1997) and Embrechts et al. (1997) demonstrated the effectiveness of EVT and GPD in capturing
tail risk in financial markets, providing a more accurate estimation of extreme losses compared
to traditional methods. However, applying EVT presents challenges, such as selecting an
appropriate threshold and ensuring stationarity in the data. Despite these challenges, EVT offers
significant advantages in modelling extreme events and improving tail risk estimation.
Market drawdowns, defined as significant declines in asset prices, are a key concern for
investors and policymakers. Previous studies, such as those by Mandelbrot (1963) and Fama
(1965), have explored the relationship between volatility and drawdowns, highlighting the role of
volatility clustering in predicting drawdowns. More recent studies have used advanced models
like GARCH and EVT to improve forecasting accuracy. However, many of these studies focus on
single models or short-time horizons, limiting their applicability to real-world scenarios. This
underscores the need for a comprehensive approach that integrates multiple models and analyzes
longer time horizons to improve the forecasting of market drawdowns.

Despite significant advancements in volatility modelling, several gaps remain in the literature.
First, there is a lack of integration between different models, such as GARCH, ARIMA, and EVT,
which limits their combined predictive power. Second, the application of seasonal decomposition
in volatility forecasting has been limited, particularly in the context of extreme events. Third,
existing tail risk estimation methods often fail to capture the full extent of market stress,
highlighting the need for more robust approaches. Finally, many studies focus on short time
horizons, limiting their ability to forecast drawdowns over longer periods. This study addresses
these gaps by integrating multiple models, incorporating seasonal decomposition, and applying
EVT to improve tail risk estimation, providing a comprehensive framework for forecasting
market drawdowns.

Methodology



The methodology employed in this study is based on a multi-model approach, combining
econometrics techniques in order to gather as many data points as possible to bring forward a
Q1 2025 forecast. The starting point has been the calculation of annualised standard deviation
using rolling windows, which provides a dynamic measure of short-term and medium-term
volatility. GARCH and EGARCH models have been utilised to estimate time-varying volatility,
charting volatility clustering and leverage effects, while also utilising a narrowing timeframe
approach. Value-at-Risk (VaR) data and parameters have been calculated at specific levels
derived on the basis of the discrete time-series, while also having the total VaR days violations
across time categorised according to VaR parameters. In order to gather more precise accuracy
the time window has been narrowed down to Q3-Q4 2024 while interpolating VaR violations
with GARCH EGARCH volatility and annualised standard deviation for each index.
Additionally, E.V.T., extreme value theory and Generalised Pareto Distribution have been
utilised to focus on the tail behaviour of asset returns. Indeed, using the Peaks-Over-Threshold
(POT) method identifies excess losses over a predefined threshold. A Generalized Pareto
Distribution (GPD) has been fitted to the excess losses, allowing for the estimation of tail risk
measures such as VaR and Expected Shortfall(ES), providing a robust framework for assessing
the likelihood and magnitude of extreme market drawdowns. Seasonal volatility decomposition
has been applied to identify recurring patterns and VaR days clustering. ARIMA and SARIMA
models are used to capture linear dependencies and seasonal patterns in returns, with VIX and
VXN included as exogenous variables to account for market expectations and future volatility. A
rolling window approach is employed to ensure that forecasts are adaptive to changing market
conditions. The results from all models are integrated to provide a comprehensive forecast for
Q1 2025, combining volatility and VaR estimates, tail risk measures, seasonal patterns, and
market expectations. Charts and data are used throughout the analysis to illustrate techniques,
and ideas, present findings, and support interpretations, ensuring a robust transparent
methodology.

Starting Point: Annualised Standard Deviation

Calculate the annualised standard deviation of daily returns for each index (DJIA, S&P 500,
NASDAQ 100, Russell 3000) using rolling windows (e.g., 7-day and 21-day). This provides a
dynamic measure of short-term and medium-term volatility, capturing changes over time.



The Dow Jones, composed of more stable, blue-chip companies, shows the lowest volatility,
with values of 0.149 (7-day) and 0.154 (21-day), indicating its relative resilience during
periods of market stress.

The S&P 500 and Russell 3000, representing broader market indices, display intermediate
volatility levels, with 7-day and 21-day values of 0.159 and 0.165 for the S&P 500, and 0.163
and 0.168 for the Russell 3000. This aligns with their diversified compositions, which balance
stability and sensitivity to market changes.



The NASDAQ 100 exhibits the highest volatility, with 7-day and 21-day annualized volatilities
of 0.191 and 0.198, respectively. This reflects the greater sensitivity of technology-heavy
indices to market movements and economic conditions.



Value-at-Risk data

The Value-at-Risk (VaR) violations data provides insights into the frequency of extreme losses
across the four indices: Dow Jones(DJI), S&P 500(GSPC), NASDAQ 100 (NDX), and Russell
3000 (RUA). The results summary shows that the Nasdaq 100 has the highest occurrence of VaR
violations at 95% C.I. (306 violations), reflecting its higher volatility and sensitivity to market
shocks. The S&P500 and Russell 3000 display intermediate levels of VaR violations, with 283
and 282 violations at 95% C.I., respectively, aligning with their broader market representation.



The average one-day drawdowns across four indices-Dow Jones Industrial Average (DJI),
S&P500 (GSPC), NASDAQ 100 (NDX), and Russell 3000 (RUA), provide a measure of potential
daily losses at various confidence levels, that have been utilised with EVT and GPD estimates of
VaR and ES in fat tail scenarios. The results reveal that the NASDAQ 100 has the highest
average drawdowns across all confidence levels, with a 99.9% VaR drawdowns of 0.0377,
reflecting its highest volatility and sensitivity to market shocks. In contrast, the Dow Jones
exhibits the lowest average drawdowns, with a 99.9% VaR drawdowns of 0.0285, indicating its
relative idiosyncratic factor as a price-weighted index, exhibits relative less fat tail losses
compared to market-cap-weighted indices. Heavy market-cap-weighted index as the
NASDAQ100 exhibit larger VaR levels, while also the sector composition becomes an important
feature as the NASDAQ100 being heavily skewed in the technology sector does impinge on
idiosyncratic higher VaR levels. On a broader level, considering the S&P500 (GSPC) and the
Russell 3000 (RUA) being more diversified these can provide relatively contained VaR levels.

Time-series with VaR violations

The interpolated time-series with VaR violations provides a visual representation of returns over
time, along with statistical measures and VaR violations. Each chart includes: 30-Day Rolling
Mean, 21-Day Rolling Standard Deviation Band, VaR Violations. All charts display periods of
significant volatility, particularly during the GFC and the 2020 COVID-19 market crash.
Clustering of VaR violations during these periods indicates extreme market stress. The
NASDAQ100 shows higher volatility compared to the other indices with more frequent and
severe VaR violations.





Narrowing the observation timeframe

The VaR violations data for 2024 and Q4 2024, along with the ratio of Q4 violations to full-year
violations, provides insights into the frequency and concentration of extreme losses across the
indices: Dow Jones (^DJI), S&P 500 (^GSPC), NASDAQ 100 (^NDX), and Russell 3000 (^RUA).



The Q4 2024 volatility, rolling mean, and VaR violation charts for the indices—Dow Jones
(^DJI), S&P 500 (^GSPC), NASDAQ 100 (^NDX), and Russell 3000 (^RUA)—provide a detailed
view of market behaviour during this period, highlighting the narrowing of the timeframe to
identify clustering patterns in VaR violations. These charts illustrate the interplay between
volatility, rolling means, and extreme losses (VaR violations) in Q4 2024, offering insights into
how market stress manifests over shorter time horizons.



The 7-day and 21-day rolling standard deviations show fluctuations in volatility throughout Q4
2024. Periods of heightened volatility are often accompanied by clusters of VaR violations. The
NASDAQ 100 exhibits higher volatility compared to the other indices, with more pronounced
spikes in the 7-day and 21-day rolling standard deviations, as the VaR violations are more
frequent and clustered in Q4, reflecting broader market sensitivity to market volatility. In the
S&P 500 and Russell 3000, the rolling mean shows a gradual decline in Q4 2024, reflecting



broader market uncertainty during this period. In the Dow Jones, VaR violations are
concentrated in mid-October and late December, corresponding to spikes in volatility. The Q4
2024 charts demonstrate the value of narrowing the timeframe to identify clustering patterns in
VaR violations. These patterns are closely tied to periods of heightened volatility and market
stress, with the NASDAQ 100 showing the most frequent and severe clustering due to its higher
sensitivity to market shocks. The Dow Jones, with its stable composition, exhibits fewer and less
severe clusters, while the S&P 500 and Russell 3000 show moderate clustering, reflecting their
diversified risk profiles. Understanding these patterns is crucial for forecasting market
drawdowns and implementing effective risk management strategies.



Implementing GARCH and EGARCH Models
This section presents the implementation of GARCH (Generalized Autoregressive Conditional
Heteroskedasticity) and EGARCH (Exponential GARCH) models to analyze the volatility
dynamics of the Dow Jones Industrial Average (^DJI). The results from these models provide
insights into the persistence of volatility, the impact of past shocks, and the presence of
asymmetric effects (leverage effects) in the index.

The GARCH model captures the time-varying volatility of the Dow Jones, with the following key
findings:
Mean Return (mu): The model estimates a small but statistically significant (p<0.001) average
daily return of 0.0677%, while the alpha (0.100) parameter indicates that 10% of the previous
day’s square returns contribute to volatility. The beta terms (0.880) indicate that 88% of the
previous day’s volatility persists across time. The GARCH model provides a good fit, with a
log-likelihood of (12718.8 and low AIC/BIC values (−25429.7) and (−25404.7) respectively.
The EGARCH model extends the GARCH framework by incorporating asymmetric effects, in
fact, the model estimates a slightly higher average daily return of 0.085179%, statistically
significant p<0.001). The Alpha term (0.3194) implies that 31.94% of past shocks have a
stronger correlation with current volatility and the Beta (0.9505) indicates even stronger
volatility persistence of 95.05% than the GARCH model. The EGARCH model indeed provides a
better fit than the GARCH model, with a higher log-likelihood (1273.10) and lower AIC/BIC
values (-25454.1 and -25429.1)





Both the GARCH and EGARCH QQ plots show deviations from the theoretical normal
distribution, particularly in the tails. The residuals exhibit heavier tails than a normal
distribution, indicating the presence of extreme values that the models do not fully capture.



Both the GARCH and EGARCH residual distributions are leptokurtic (peaked with heavy tails),
which is typical for financial data. The EGARCH residuals appear slightly better behaved, with
a more symmetric distribution around zero, reflecting its ability to capture asymmetric effects.
However, both models still show deviations from normality, particularly in the tails, reinforcing
the need for robust risk management techniques like Extreme Value Theory (EVT).

GARCH and EGARCH model summaries for the S&P 500 (^GSPC)

The GARCH model results for all four indices display the same parameter values for the
volatility equation: Omega (baseline volatility): DJI (0.0000021873), GSPC Omega
(0.0000023570), NDX Omega (0.0000023000), RUA Omega (0.0000024000). For all four



GARCH model index results the Alpha parameter equates (0.100) indicating that 10% of the
previous day’s squared returns contribute to volatility across time, the Alpha parameter is
statistically significant (p<0.001) indeed proving that past shocks have a moderate impact on
current volatility. The Beta parameter for all four indexes equated to (0.88) proving that 88% of
the previous day’s volatility persists across the time-series and the parameter is highly significant
(p<0.001) showing strong volatility clustering.

The S&P500( GSPC) EGARCH model displays specific results with a (mu) parameter of
(0.0091) and the parameter is highly significant (p<0.001), while the Omega (-0.4569) highly
significant (p<0.001) represents the baseline level of volatility in the logarithmic form. The
Alpha parameter (0.3176) indicates that past shocks have a stronger impact on current volatility
compared to GARCH models, with statistically significant (p<0.001). The Beta parameter
(0.9500) indicates that 95% of the previous day’s volatility persists across time, also statistically
significant (p<0.001) showing even stronger volatility clustering than the GARCH model.

The EGARCH model provides a better fit than the GARCH model, as indicated by the
higher log-likelihood and lower AIC/BIC values. This suggests that the EGARCH model
is more appropriate for modelling the S&P 500's volatility, especially when accounting
for asymmetric effects.





The QQ plots compare the distribution of the model residuals to a normal distribution, revealing
heavy tails in both the GARCH and EGARCH residuals. This indicates that the models
underestimate the likelihood of extreme events, a common limitation in financial data modelling.
However, the EGARCH residuals appear slightly better behaved, with a more symmetric
distribution around zero, reflecting its ability to capture asymmetric effects (leverage effects).

The PDF (Probability Density Function) and CDF (Cumulative Distribution Function) plots for
the GARCH and EGARCH residuals of the S&P 500 (^GSPC) provide further insights into the



distribution of model residuals. The PDFs for both models show that the residuals are
leptokurtic, meaning they have heavier tails and a sharper peak compared to a normal
distribution. This is typical for financial data, where extreme events occur more frequently than
predicted by a normal distribution. The EGARCH residuals appear slightly more symmetric
around zero, reflecting the model's ability to better capture asymmetric effects (leverage effects).

The CDFs illustrate the cumulative probability of the residuals, showing how well the models
capture the distribution of returns. While both models exhibit deviations from normality in the
tails, the EGARCH model provides a better fit, as evidenced by its more symmetric and centred
distribution. This suggests that the EGARCH model is more effective in modelling the S&P 500's
volatility dynamics, particularly in capturing extreme events and asymmetric responses to
shocks. These findings reinforce the importance of using EGARCH for accurate volatility
forecasting and risk management.



The news impact curve demonstrates how volatility responds to shocks (positive and negative
returns). The curve is asymmetric, with negative shocks having a greater impact on volatility
than positive shocks of the same magnitude. This aligns with the leverage effect, where bad news
increases volatility more than good news. The EGARCH model, with its ability to model this
asymmetry, provides a more accurate representation of the S&P 500's volatility dynamics
compared to the GARCH model.

GARCH and EGARCH Model Summary for Nasdaq100

As previously specified the GARCH models display consistently similar parameters across
time-series, in this instance, the EGARCH model results for the Nasdaq100 better display the
asymmetry in volatility shocks, resulting in parameters: (mu) coefficient 0.00109 statistically
significant (p<0.001), the Omega constant (-03773) represents the baseline level of volatility in
the logarithmic form. Alpha term (0.2637) indicates that past shocks have a stronger impact on
current volatility compared to the GARCH model, also the Beta parameter (0.9566) displays a
strong volatility persistency across time, all parameters are highly significant (p<0.001). The
EGARCH model provides a slightly better fit than the GARCH model, as indicated by the higher
log-likelihood and lower AIC/BIC values. This suggests that the EGARCH model is more
appropriate for modelling the NASDAQ 100's volatility, especially when accounting for



asymmetric effects.



The QQ plots for the GARCH and EGARCH residuals of the NASDAQ 100 (^NDX) compare the
distribution of residuals to a normal distribution. Both plots show heavy tails, indicating that the
residuals have more extreme values than expected under a normal distribution. This is typical for
financial data, where extreme events occur more frequently. The EGARCH residuals appear
slightly more symmetric around zero, reflecting the model's ability to better capture asymmetric
effects (leverage effects). However, both models still exhibit deviations from normality,
particularly in the tails, highlighting the need for robust risk management techniques like
Extreme Value Theory (EVT) to account for tail risk.



The PDFs (Probability Density Functions) for the GARCH and EGARCH residuals show that the
residuals are leptokurtic, meaning they have heavier tails and a sharper peak compared to a
normal distribution. This is consistent with the presence of extreme events in financial data. The
EGARCH residuals are slightly more symmetric and centred around zero, reflecting the model's
ability to better capture asymmetric effects. This suggests that the EGARCH model provides a
more accurate representation of the NASDAQ 100's volatility dynamics, particularly in capturing
extreme events and asymmetric responses to shocks. The CDFs (Cumulative Distribution
Functions) for the residuals illustrate the cumulative probability of the residuals, showing how
well the models capture the distribution of returns. Both models exhibit deviations from
normality in the tails, but the EGARCH model provides a better fit, as evidenced by its more
symmetric and centred distribution. This reinforces the importance of using EGARCH for
accurate volatility forecasting and risk management, particularly for indices like the NASDAQ
100 that are prone to extreme events and asymmetric volatility responses.

The news impact curve illustrates how volatility responds to shocks (positive and negative
returns) for the NASDAQ 100. The curve is asymmetric, with negative shocks having a greater
impact on volatility than positive shocks of the same magnitude. This aligns with the leverage
effect, where bad news increases volatility more than good news. The EGARCH model, which



explicitly accounts for this asymmetry, provides a more accurate representation of the NASDAQ
100's volatility dynamics compared to the GARCH model. This finding underscores the
importance of using EGARCH for modelling indices with significant leverage effects, such as the
technology-heavy NASDAQ 100.

GARCH and EGARCH model results of the Russell 3000

The EGARCH model results for the Russell 3000 display a (mu) coefficient (0.00089127), and an
Omega constant (-0.4071) as baseline volatility in logarithmic form. The Alpah parameter
(0.2958) indicates that past shocks have a stronger impact on current volatility. The Beta
parameter (0.9551) indicates that 95.51% of the previous volatility persists across time, all terms



highly statistically significant (p<0.001). The EGARCH model captures asymmetric effects
(leverage effects), where negative shocks have a greater impact on volatility than positive shocks.
This is reflected in the alpha[1] coefficient, which is higher in the EGARCH model. The
EGARCH model provides a slightly better fit than the GARCH model, as indicated by the higher
log-likelihood and lower AIC/BIC values. This suggests that the EGARCH model is more
appropriate for modelling the Russell 3000's volatility, especially when accounting for
asymmetric effects.







The ACF plots confirm the presence of volatility clustering in the Dow Jones, which is
effectively captured by both the GARCH and EGARCH models.
Asymmetric Effects: The EGARCH model provides a better fit during downturns, reflecting its
ability to capture leverage effects.
VaR Limits: The EGARCH VaR is slightly more conservative, making it more suitable for risk
management during extreme market conditions.
Model Diagnostics: The ACF of standardized residuals and the QQ plot indicate that the
GARCH model fits well but may underestimate tail risk, highlighting the need for robust risk
management techniques like Extreme Value Theory (EVT).



The ACF plots confirm the presence of volatility clustering in the S&P 500, which is effectively
captured by both the GARCH and EGARCH models.
The EGARCH model provides a better fit during downturns, reflecting its ability to capture
leverage effects. The EGARCH VaR is slightly more conservative, making it more suitable for
risk management during extreme market conditions. The ACF of standardized residuals and the
QQ plot indicate that the GARCH model fits well but may underestimate tail risk, highlighting
the need for robust risk management techniques like Extreme Value Theory (EVT).







DJI Empirical Density of Standardized Residuals, Conditional SD
The comparison between GARCH and EGARCH residuals helps in understanding the
effectiveness of these models in capturing the volatility clustering and leverage effects in the
DJIA. The plot indicates how well each model fits the data, with deviations from a normal
distribution suggesting areas where the models may need improvement.The conditional SDs
represent the estimated volatility over time, providing insights into how market volatility evolves.
The chart allows for a visual comparison of how GARCH and EGARCH models capture
volatility dynamics, highlighting periods of high and low volatility. This is crucial for
understanding the time-varying nature of risk in the DJIA and for assessing the predictive
performance of these models.



S&P500 Empirical Density of Standardized Residuals, Conditional SD
Similar to the DJIA chart, this plot shows the empirical density of standardized residuals for the
S&P 500 (GSPC) using GARCH and EGARCH models. The density functions help in assessing
the distributional properties of the residuals, which are critical for model validation. Deviations
from normality, such as fat tails or skewness, can indicate model misspecification. This analysis
is essential for refining volatility models to better capture the characteristics of the S&P 500
index returns. The S&P 500 returns with superimposed conditional standard deviations from
GARCH and EGARCH models provides a visual representation of how these models estimate
volatility over time, allowing for a comparison of their ability to capture market dynamics. The
chart is useful for identifying periods of market stress and understanding how different models
respond to such events. This information is valuable for risk management and forecasting
applications in the context of the S&P 500.



NDX Empirical Density of Standardized Residuals, Conditional SD
The chart of empirical density of standardized residuals for the NASDAQ-100 (NDX) index,
comparing the GARCH and EGARCH models reveals the distributional characteristics of the
residuals, with deviations from a normal distribution (e.g., fat tails or skewness) indicating
potential model limitations. The comparison between GARCH and EGARCH residuals highlights
how each model captures the volatility dynamics of the NDX, with EGARCH potentially better
accounting for asymmetric effects like leverage. This chart presents the time series of NDX
returns from 1992 to 2024, with superimposed conditional standard deviations (SD) derived from
GARCH and EGARCH models. The returns are plotted on the y-axis, while the x-axis represents
time. The conditional SDs, which estimate volatility over time, are overlaid to show how each
model captures periods of high and low volatility. The chart allows for a detailed examination of
how GARCH and EGARCH models respond to market events, such as the dot-com bubble or the
2008 financial crisis, providing insights into their ability to model volatility in a
technology-heavy index like the NDX.



Russell 3000 Empirical Density of Standardized Residuals, Conditional SD

The comparison between GARCH and EGARCH residuals provides insights into how each model
captures the volatility characteristics of a broad market index like the RUA, with EGARCH
potentially better modeling asymmetric volatility effects. The time series of RUA returns from
1992 to 2004, with superimposed conditional standard deviations from GARCH and EGARCH
models. The returns are plotted on the y-axis, and the x-axis represents time. The conditional
SDs, which estimate volatility over time, are overlaid to show how each model captures periods
of market stress and stability. The chart provides a detailed view of how GARCH and EGARCH
models perform in estimating volatility for a broad market index, highlighting their ability to
adapt to changing market conditions and capture the evolving risk landscape of the RUA.



ARIMA, SARIMA, and Stochastic Volatility Models with VIX and VXN

inference

In this study has been deployed a comprehensive framework of ARIMA, SARIMA, and stochastic
volatility models (GARCH and EGARCH) to analyze and forecast market volatility, with a
particular focus on the Dow Jones Industrial Average (^DJI). The models are enhanced by
incorporating external volatility measures, namely the VIX (CBOE Volatility Index) and VXN
(Nasdaq-100 Volatility Index), to capture the impact of market sentiment and implied volatility
on equity returns. The ARIMA(1,1,1) model reveals significant autoregressive and moving
average components, with the VIX showing a strong negative relationship with ^DJI returns,
consistent with the expectation that heightened market uncertainty leads to lower returns. The
SARIMAX(1,1,1)x(1,1,1,12) model extends this analysis by incorporating seasonal effects,
highlighting the importance of seasonal moving average components in capturing periodic
volatility patterns. The stochastic volatility models (GARCH and EGARCH) further complement
this framework by modeling time-varying volatility, with GARCH parameters indicating strong
persistence in volatility and EGARCH capturing asymmetric responses to market shocks.
Together, these models provide a robust toolkit for forecasting market drawdowns, with the
integrated use of VIX and VXN offering additional insights into the interplay between implied
volatility and equity market dynamics. This multi-model approach not only enhances the
accuracy of volatility forecasts but also provides valuable implications for risk management,
portfolio optimization, and strategic decision-making in anticipation of potential market
drawdowns in Q1 2025.

Stochastic Volatility Model Summary for ^DJI

The Constant Mean - GARCH Model results for the Dow Jones Industrial Average (^DJI)
indicate a well-specified model with a log-likelihood of 14,901.8 and strong statistical
significance across all parameters. The mean model shows a constant daily return (mu) of
6.5696e-04, with a highly significant t-statistic (158.887), suggesting a stable mean return over
the observed period. The volatility model parameters, omega (2.8117e-06), alpha[1] (0.1000),
and beta[1] (0.8800), are all statistically significant, indicating that the GARCH(1,1) model
effectively captures the volatility dynamics of ^DJI. The high value of beta[1] suggests strong
persistence in volatility, while alpha[1] indicates a moderate response to recent shocks. The



forecasted volatility over the next 90 days shows a gradual increase, reflecting the model's
ability to project future volatility trends.

ARIMA Model Summary for Dow Jones Industrial Average:

The ARIMA(1,1,1) model for ^DJI, incorporating external variables (VIX and VXN), provides a
robust fit with a log-likelihood of 13,728.563. The model parameters are statistically significant,
with the autoregressive term (ar.L1 = -0.1193) and moving average term (ma.L1 = -0.9813)
showing strong influence on the series. The negative coefficient for VIX (-0.0038) suggests that
increases in market volatility (as measured by the VIX) are associated with declines in ^DJI
returns, consistent with economic intuition. However, the VXN coefficient is not statistically
significant, indicating limited explanatory power for ^DJI in this model. The sigma2 value
(0.0001) reflects the model's residual variance, and the Ljung-Box test confirms no
autocorrelation in residuals, supporting the model's adequacy. The Jarque-Bera test, however,
indicates non-normality in residuals, which may suggest the need for further refinement or
alternative distributions.

SARIMAX Results and Forecasts

The SARIMAX(1,1,1)x(1,1,1,12) model results for the Dow Jones Industrial Average (^DJI)
provide a detailed analysis of the time series, incorporating both non-seasonal and seasonal
components, as well as external regressors (VIX and VXN). The model achieves a log-likelihood
of 13,580.732, with significant coefficients for most parameters. The non-seasonal
autoregressive term (ar.L1 = -0.0699) and moving average term (ma.L1 = -0.9027) are both
statistically significant, indicating strong temporal dependencies in the series. The seasonal
moving average term (ma.S.L12 = -0.9338) is also highly significant, suggesting a strong
seasonal pattern in the data. However, the seasonal autoregressive term (ar.S.L12 = -0.0027) is
not significant, indicating that seasonal autoregressive effects may not be as influential.
The external variables, VIX (-0.0047) and VXN (-0.0029), are both significant, with negative
coefficients suggesting that increases in market volatility (as measured by VIX and VXN) are
associated with declines in ^DJI returns. The sigma2 value (0.0001) represents the residual
variance, and the Ljung-Box test indicates some autocorrelation in residuals, which may suggest
room for model improvement. The Jarque-Bera test confirms non-normality in residuals,
highlighting potential limitations in the model's distributional assumptions.



ARIMA and SARIMA Forecasts for DJI

The ARIMA model forecasts a mix of positive and negative returns over the next 90 days, with
values ranging from 0.001211 to -0.000157. This suggests a relatively stable outlook for ^DJI,
with minor fluctuations expected. The SARIMA model forecasts predominantly negative returns



over the same period, with values ranging from -0.003059 to -0.005646. This more pessimistic
outlook may reflect the model's incorporation of seasonal effects and external volatility measures
(VIX and VXN), which could be signaling heightened market uncertainty. The inclusion of VIX
and VXN as external regressors adds value, with both variables showing significant negative
relationships with ^DJI returns. This aligns with the expectation that higher market volatility is
associated with lower returns.The divergence between ARIMA and SARIMA forecasts highlights
the importance of considering seasonal effects and external factors when modeling ^DJI. The
SARIMA model's more cautious outlook may be more reflective of current market conditions,
particularly given the influence of VIX and VXN.

Stochastic Volatility Model Summary for the S&P 500

The Constant Mean - GARCH Model results for the S&P 500 (^GSPC) provide insights into the
volatility dynamics of this major equity index. The model achieves a log-likelihood of 5,356.28,
with significant coefficients for the mean and volatility parameters. The mean return (mu =
-0.0705) is statistically significant, indicating a negative average return over the observed
period. The volatility model parameters, omega (3.1520e-06), alpha[1] (0.1000), and beta[1]
(0.8800), suggest a well-specified GARCH(1,1) model. The high value of beta[1] indicates strong
persistence in volatility, while alpha[1] reflects a moderate response to recent shocks. However,
the omega term is not statistically significant, which may suggest that the constant term in the
volatility equation is less influential. The forecasted volatility over the next 90 days shows a
gradual decline, with values decreasing from 0.004043 to 0.000801. This suggests a reduction in
market volatility over the forecast horizon, which could be indicative of stabilizing market
conditions. The robust covariance estimator used in the model ensures that the standard errors
are reliable, even in the presence of heteroskedasticity



ARIMA Model Summary for the S&P 500

The ARIMA(1,1,1) model results for the S&P 500 (^GSPC) provide a robust analysis of the time
series, incorporating external regressors (VIX and VXN) to capture the impact of market
volatility. The model achieves a log-likelihood of 13,477.640, with significant coefficients for the
autoregressive (ar.L1 = -0.1182) and moving average (ma.L1 = -0.9778) terms. The negative
coefficient for VIX (-0.0030) is statistically significant, indicating that increases in market
volatility (as measured by the VIX) are associated with declines in ^GSPC returns. However, the
coefficient for VXN (-0.0007) is not significant, suggesting that Nasdaq-specific volatility may
not have a strong influence on ^GSPC returns.
The sigma2 value (0.0002) represents the residual variance, and the Ljung-Box test indicates no
autocorrelation in residuals, supporting the model's adequacy. However, the Jarque-Bera test
confirms non-normality in residuals, highlighting potential limitations in the model's
distributional assumptions. The heteroskedasticity test suggests the presence of varying volatility
in residuals, which could be addressed by incorporating GARCH-type models.

SARIMA Model Summary for the S&P 500

The SARIMAX(1,1,1)x(1,1,1,12) model results for the S&P 500 (^GSPC) provide a
comprehensive analysis of the time series, incorporating both non-seasonal and seasonal
components, as well as external regressors (VIX and VXN). The model achieves a log-likelihood
of 13,407.687, with significant coefficients for most parameters. The non-seasonal
autoregressive term (ar.L1 = -0.1186) and moving average term (ma.L1 = -0.9874) are both



statistically significant, indicating strong temporal dependencies in the series. The seasonal
moving average term (ma.S.L12 = -0.9903) is also highly significant, suggesting a strong
seasonal pattern in the data. The seasonal autoregressive term (ar.S.L12 = 0.0255) is significant,
indicating some influence of seasonal autoregressive effects.
The external variable VIX (-0.0023) is significant, with a negative coefficient suggesting that
increases in market volatility (as measured by the VIX) are associated with declines in ^GSPC
returns. However, the coefficient for VXN (-0.0007) is not significant, indicating that
Nasdaq-specific volatility may not have a strong influence on ^GSPC returns. The sigma2 value
(0.0002) represents the residual variance, and the Ljung-Box test indicates no autocorrelation in
residuals, supporting the model's adequacy. However, the Jarque-Bera test confirms
non-normality in residuals, highlighting potential limitations in the model's distributional
assumptions.The SARIMA model forecasts a mix of positive and negative returns over the same
period, with values ranging from 0.002010 to -0.001957. This more nuanced outlook reflects the
model's incorporation of seasonal effects and external volatility measures (VIX), which could be
signaling varying market conditions.



ARIMA Model Summary for the Nasdaq 100

The ARIMA(1,1,1) model results for the NASDAQ-100 (^NDX) provide a robust analysis of the
time series, incorporating external regressors (VIX and VXN) to capture the impact of market
volatility. The model achieves a log-likelihood of 12,886.179, with significant coefficients for the
autoregressive (ar.L1 = -0.1073) and moving average (ma.L1 = -0.9813) terms. The coefficient
for VIX (0.0024) is statistically significant and positive, indicating that increases in market
volatility (as measured by the VIX) are associated with higher ^NDX returns. This contrasts with
the typical negative relationship observed in other indices, possibly reflecting the unique
characteristics of the technology-heavy NASDAQ-100. The coefficient for VXN (-0.0063) is also
significant and negative, suggesting that increases in Nasdaq-specific volatility are associated
with declines in ^NDX returns.
The sigma2 value (0.0002) represents the residual variance, and the Ljung-Box test indicates no
autocorrelation in residuals, supporting the model's adequacy. However, the Jarque-Bera test
confirms non-normality in residuals, highlighting potential limitations in the model's
distributional assumptions. The heteroskedasticity test suggests the presence of varying volatility
in residuals, which could be addressed by incorporating GARCH-type models.

The ARIMA model captures the temporal dependencies in ^NDX returns effectively, with
significant autoregressive and moving average components. The inclusion of VIX and VXN as
external regressors adds value, providing insights into the impact of both general and
Nasdaq-specific market volatility.The positive relationship between VIX and ^NDX returns is
unusual and may reflect the unique risk-return profile of technology stocks, which often benefit
from market uncertainty due to their growth potential. The negative relationship with VXN aligns
with expectations, as higher Nasdaq-specific volatility typically signals increased risk.



SARIMA Model Summary for Nasdaq 100

The SARIMAX(1,1,1)x(1,1,1,12) model results for the NASDAQ-100 (^NDX) provide a
comprehensive analysis of the time series, incorporating both non-seasonal and seasonal
components, as well as external regressors (VIX and VXN). The model achieves a log-likelihood
of 12,777.109, with significant coefficients for most parameters. The non-seasonal
autoregressive term (ar.L1 = -0.0705) and moving average term (ma.L1 = -0.9486) are both
statistically significant, indicating strong temporal dependencies in the series. The seasonal
moving average term (ma.S.L12 = -0.9630) is also highly significant, suggesting a strong
seasonal pattern in the data. However, the seasonal autoregressive term (ar.S.L12 = -0.0049) is
not significant, indicating that seasonal autoregressive effects may not be as influential.
The external variable VIX (0.0029) is significant and positive, suggesting that increases in
market volatility (as measured by the VIX) are associated with higher ^NDX returns. This
contrasts with the typical negative relationship observed in other indices, possibly reflecting the
unique characteristics of the technology-heavy NASDAQ-100. The coefficient for VXN (-0.0089)
is also significant and negative, indicating that increases in Nasdaq-specific volatility are
associated with declines in ^NDX returns. The sigma2 value (0.0002) represents the residual
variance, and the Ljung-Box test indicates some autocorrelation in residuals, which may suggest
room for model improvement. The Jarque-Bera test confirms non-normality in residuals,
highlighting potential limitations in the model's distributional assumptions.The ARIMA model
forecasts a mix of positive and negative returns over the next 90 days, with values ranging from
0.000521 to -0.000922. This suggests a relatively stable outlook for ^NDX, with minor
fluctuations expected.The SARIMA model forecasts a mix of positive and negative returns over
the same period, with values ranging from -0.003481 to 0.002653. This more nuanced outlook
reflects the model's incorporation of seasonal effects and external volatility measures (VIX and
VXN), which could be signaling varying market conditions.The SARIMA model captures both
non-seasonal and seasonal dynamics in ^NDX, with significant moving average components at
both levels. The non-significant seasonal autoregressive term suggests that seasonal patterns
may be better captured through moving average effects.The positive relationship between VIX
and ^NDX returns is unusual and may reflect the unique risk-return profile of technology stocks,
which often benefit from market uncertainty due to their growth potential. The negative
relationship with VXN aligns with expectations, as higher Nasdaq-specific volatility typically
signals increased risk.The forecasts from both ARIMA and SARIMA models provide valuable
insights for anticipating future market movements. The SARIMA model's incorporation of
seasonal effects offers a more nuanced view, which can be particularly useful for strategic
planning and risk management.



ARIMA Model Summary for the Russell 3000

The ARIMA(1,1,1) model results for the Russell 3000 (^RUA) provide a robust analysis of the
time series, incorporating external regressors (VIX and VXN) to capture the impact of market
volatility. The model achieves a log-likelihood of 13,397.504, with significant coefficients for the
autoregressive (ar.L1 = -0.1074) and moving average (ma.L1 = -0.9702) terms. The coefficient
for VIX (-0.0037) is statistically significant and negative, indicating that increases in market
volatility (as measured by the VIX) are associated with declines in ^RUA returns. This aligns
with the typical inverse relationship between market volatility and equity returns. However, the
coefficient for VXN (-0.0007) is not significant, suggesting that Nasdaq-specific volatility may
not have a strong influence on ^RUA returns.
The sigma2 value (0.0002) represents the residual variance, and the Ljung-Box test indicates no
autocorrelation in residuals, supporting the model's adequacy. However, the Jarque-Bera test



confirms non-normality in residuals, highlighting potential limitations in the model's
distributional assumptions. The heteroskedasticity test suggests the presence of varying volatility
in residuals, which could be addressed by incorporating GARCH-type models.

SARIMA Model Summary for the Russell 3000

The SARIMAX(1,1,1)x(1,1,1,12) model results for the Russell 3000 (^RUA) provide a
comprehensive analysis of the time series, incorporating both non-seasonal and seasonal
components, as well as external regressors (VIX and VXN). The model achieves a log-likelihood
of 13,325.801, with significant coefficients for most parameters. The non-seasonal
autoregressive term (ar.L1 = -0.1117) and moving average term (ma.L1 = -0.9826) are both
statistically significant, indicating strong temporal dependencies in the series. The seasonal
moving average term (ma.S.L12 = -0.9879) is also highly significant, suggesting a strong
seasonal pattern in the data. However, the seasonal autoregressive term (ar.S.L12 = 0.0102) is
not significant, indicating that seasonal autoregressive effects may not be as influential.
The external variable VXN (-0.0023) is significant and negative, suggesting that increases in
Nasdaq-specific volatility are associated with declines in ^RUA returns. However, the coefficient
for VIX (-0.0012) is not significant, indicating that general market volatility may not have a
strong influence on ^RUA returns. The sigma2 value (0.0002) represents the residual variance,
and the Ljung-Box test indicates no autocorrelation in residuals, supporting the model's
adequacy. However, the Jarque-Bera test confirms non-normality in residuals, highlighting
potential limitations in the model's distributional assumptions. The ARIMA model forecasts a mix
of positive and negative returns over the next 90 days, with values ranging from 0.000637 to
-0.000267. This suggests a relatively stable outlook for ^RUA, with minor fluctuations expected.
The SARIMA model forecasts a mix of positive and negative returns over the same period, with
values ranging from 0.001334 to -0.002529. This more nuanced outlook reflects the model's



incorporation of seasonal effects and external volatility measures (VXN), which could be
signaling varying market conditions.The SARIMA model captures both non-seasonal and
seasonal dynamics in ^RUA, with significant moving average components at both levels. The
non-significant seasonal autoregressive term suggests that seasonal patterns may be better
captured through moving average effects. The significant negative relationship between VXN and
^RUA returns underscores the importance of Nasdaq-specific volatility in forecasting returns for
a broad-based index like the Russell 3000. The non-significance of VIX suggests that general
market volatility may not be as relevant for ^RUA.



Applying rolling standard deviation, GARCH and EGARCH models while
narrowing to Q3-Q4 data, inference with Value-at-Risk violations

The charts depict the combined volatility and Value-at-Risk (VaR) violations for the Dow Jones
Industrial Average (^DJI), S&P 500 (^GSPC), NASDAQ-100 (^NDX), and Russell 3000
(^RUA) indices over the period from Q3 to Q4 2024. The analysis utilizes 7-day and 21-day
rolling standard deviations to capture short- and medium-term volatility trends, alongside
GARCH and EGARCH conditional volatility models to estimate time-varying volatility. VaR
violations are calculated at four confidence levels (95%, 97.5%, 99%, and 99.9%) for both
GARCH and EGARCH models, providing insights into the frequency and severity of extreme
market movements. The 7-day rolling standard deviation shows short-term volatility spikes,
while the 21-day rolling standard deviation provides a smoother, medium-term perspective. The
GARCH and EGARCH conditional volatility estimates reveal how volatility evolves over time,
with EGARCH often capturing asymmetric responses to market shocks more effectively than
GARCH. The narrowing of the timeframe to Q3-Q4 2024 allows for a focused analysis of recent
market conditions, highlighting periods of heightened volatility and potential market stress.The
VaR violations indicate instances where actual returns exceed the predicted VaR thresholds,
signaling unexpected market movements. The GARCH VaR violations and EGARCH VaR
violations are plotted at different confidence levels, with higher confidence levels (e.g., 99.9%)
showing fewer but more severe violations. The comparison between GARCH and EGARCH VaR
violations provides insights into the relative performance of these models in capturing extreme
market risks. For example, EGARCH may outperform GARCH in periods of asymmetric
volatility, such as during market downturns.



^DJI: The charts show moderate volatility with occasional spikes, particularly in Q4 2024. VaR
violations are more frequent at the 95% confidence level, suggesting that the index experienced
several unexpected downturns during this period. ^GSPC: The S&P 500 exhibits similar
volatility trends, with GARCH and EGARCH models capturing the evolving risk environment.
VaR violations at higher confidence levels (e.g., 99.9%) are rare but significant, indicating
extreme market events.^NDX: The NASDAQ-100, being more technology-heavy, shows higher
volatility and more frequent VaR violations, especially at the 95% and 97.5% levels. This reflects
the inherent risk in growth-oriented sectors.^RUA: The Russell 3000, representing a broader



market, displays a mix of volatility trends and VaR violations, with EGARCH often providing a
better fit for capturing asymmetric volatility.

VaR Violations: Extreme Risk Assessment

VaR violations occur when actual returns exceed the predicted VaR thresholds, signaling
unexpected market movements. The analysis evaluates VaR violations at four confidence levels
(95%, 97.5%, 99%, and 99.9%) for both GARCH and EGARCH models. Higher confidence
levels (e.g., 99.9%) correspond to more extreme tail risks, with fewer but more severe
violations.^DJI: The Dow Jones Industrial Average exhibits moderate volatility, with VaR
violations concentrated at the 95% and 97.5% confidence levels. This suggests frequent but
relatively mild market downturns during Q3-Q4 2024. The EGARCH model shows fewer
violations than GARCH, indicating its superior ability to capture asymmetric volatility and
extreme risks.^GSPC: The S&P 500 shows similar trends, with VaR violations at higher
confidence levels (e.g., 99.9%) being rare but significant. These extreme events likely correspond
to macroeconomic shocks or sector-wide selloffs. The EGARCH model again outperforms
GARCH, particularly in capturing tail risks during market stress.
^NDX: The NASDAQ-100, dominated by technology stocks, exhibits higher volatility and more
frequent VaR violations, especially at the 95% and 97.5% levels. This reflects the inherent risk in
growth-oriented sectors, which are more sensitive to changes in interest rates, earnings
expectations, and global economic conditions. The EGARCH model's ability to capture
asymmetric volatility is particularly evident here, as it shows fewer violations during periods of
market stress.



^RUA: The Russell 3000, representing a broad market index, displays a mix of volatility trends
and VaR violations. The EGARCH model's superior performance in capturing asymmetric
volatility is evident, particularly during periods of market downturns. VaR violations at the 99%
and 99.9% levels are rare but significant, highlighting the importance of stress testing for
extreme market events.

Implications for Risk Management and Forecasting

The findings from the volatility and VaR violation analysis have significant implications for risk
management and forecasting. The superior performance of EGARCH in capturing asymmetric
volatility underscores its utility for modeling indices with high sensitivity to negative shocks. This
is particularly relevant for technology-heavy indices like the NASDAQ-100, where leverage
effects are pronounced.
For risk managers, the frequent VaR violations at lower confidence levels (e.g., 95%) suggest
the need for robust risk mitigation strategies, such as dynamic hedging and diversification. The
rare but severe violations at higher confidence levels (e.g., 99.9%) highlight the importance of
stress testing and scenario analysis for extreme market events.
From a forecasting perspective, the observed volatility trends in Q3-Q4 2024 provide valuable
inputs for predicting future market conditions. The heightened volatility in Q4 2024, coupled
with frequent VaR violations, suggests that investors should prepare for continued market
uncertainty in Q1 2025. This analysis can inform portfolio rebalancing, option pricing, and
risk-adjusted performance evaluation.

Tail Distribution and Extreme Risk Analysis for Major Indices

This study employs Extreme Value Theory (EVT) to analyze the tail behavior and extreme risks of
major equity indices, including the Dow Jones Industrial Average (^DJI), S&P 500 (^GSPC),
NASDAQ-100 (^NDX), and Russell 3000 (^RUA). Using the Peaks-Over-Threshold (POT)
method, we model the tail of the return distribution by fitting a Generalized Pareto Distribution
(GPD) to excess returns above a predefined threshold. The GPD is characterized by two
parameters: the shape parameter (ξ), which determines the heaviness of the tail, and the scale
parameter (σ), which controls the dispersion of excess returns.



The Value-at-Risk (VaR) and Expected Shortfall (ES) are estimated at a 99% confidence level
to quantify extreme downside risks. The VaR is calculated as:

where (n) is the total number of observations, (nu) is the number of excesses, and
p is the tail probability (e.g., 1% for 99% VaR). The Expected Shortfall (ES) is derived as:

The Extreme Value Theory (EVT) analysis using the Peaks-Over-Threshold (POT) method and
Generalized Pareto Distribution (GPD) fit provides critical insights into the tail behavior and
extreme risks of the Dow Jones Industrial Average (^DJI), S&P 500 (^GSPC), NASDAQ-100
(^NDX), and Russell 3000 (^RUA) indices. Below is a detailed interpretation of the results for
each index, along with their implications for risk management and portfolio optimization.

Index Threshold (95th
Percentile)

Shape
Parameter (ξ)

Scale
Parameter (σ)

99%
VaR

99% Expected
Shortfall (ES)

^DJI 0.0163 0.4928 0.0063 0.0319 0.0286

^GSPC 0.0169 0.9234 0.0068 0.0423 -0.0727

^NDX 0.0213 0.9357 0.0070 0.0478 -0.1527

^RUA 0.0175 0.7818 0.0061 0.0374 0.0027



Dow Jones Industrial Average (^DJI) Threshold (95th percentile): 0.0163, GPD Parameters:
Shape (ξ): 0.4928 (heavy-tailed distribution),Scale (σ): 0.0063
99% VaR: 0.0319 (3.19% daily loss), 99% ES: 0.0286 (2.86% average loss beyond VaR).
The positive shape parameter indicates a heavy-tailed distribution, meaning extreme losses are
more likely than predicted by a normal distribution. The 99% VaR of 3.19% suggests a 1%
chance of daily losses exceeding this threshold.The 99% ES of 2.86% provides a more
conservative measure of tail risk, indicating the average loss in the worst 1% of cases.

.

S&P 500 (^GSPC): Threshold (95th percentile): 0.0169, GPD Parameters: Shape (ξ): 0.9234
(very heavy-tailed distribution),Scale (σ): 0.0068, 99% VaR: 0.0423 (4.23% daily loss),99%
ES: -0.0727 (7.27% average loss beyond VaR). The higher shape parameter (ξ = 0.9234)
indicates an even heavier tail compared to ^DJI, suggesting a greater likelihood of extreme
losses.The 99% VaR of 4.23% is higher than that of ^DJI, reflecting the broader market's
sensitivity to extreme events.The 99% ES of -7.27% highlights the severity of losses in the
worst-case scenarios, emphasizing the need for robust risk management.



.

NASDAQ-100 (^NDX):Threshold (95th percentile): 0.0213,GPD Parameters:Shape (ξ):
0.9357 (very heavy-tailed distribution),Scale (σ): 0.0070, 99% VaR: 0.0478 (4.78% daily
loss),99% ES: -0.1527 (15.27% average loss beyond VaR).The NASDAQ-100 exhibits the
heaviest tail among the indices, with a shape parameter of 0.9357. This reflects the high
sensitivity of technology stocks to extreme market movements.The 99% VaR of 4.78% is the
highest among the indices, indicating a greater likelihood of extreme losses.The 99% ES of
-15.27% underscores the severe downside risk in the worst 1% of cases, highlighting the need for
aggressive risk mitigation strategies.



Russell 3000 (^RUA):Threshold (95th percentile): 0.0175,GPD Parameters:Shape (ξ): 0.7818
(heavy-tailed distribution),Scale (σ): 0.0061,99% VaR: 0.0374 (3.74% daily loss),99% ES:
0.0027 (0.27% average loss beyond VaR). The shape parameter (ξ = 0.7818) indicates a
heavy-tailed distribution, though not as extreme as ^GSPC or ^NDX. The 99% VaR of 3.74%
suggests a 1% chance of daily losses exceeding this threshold.The 99% ES of 0.27% is relatively
low compared to the other indices, reflecting the diversified nature of the Russell 3000, which
mitigates extreme downside risk.

Implications for Risk Management

The heavy-tailed nature of the return distribution (ξ = 0.4928) highlights the importance of
accounting for extreme events in risk management. Traditional models that assume normality
(e.g., Gaussian distribution) would underestimate the likelihood of extreme losses. The 99% VaR
and ES estimates provide actionable insights for risk managers: VaR (3.19%): This metric can
be used to set risk limits and determine capital reserves. For example, a portfolio manager might
use the 99% VaR to ensure that the portfolio is not overly exposed to extreme downside risk. ES
(2.86%): This metric is particularly useful for stress testing and scenario analysis, as it
quantifies the average loss in the worst-case scenarios. The tail risk estimates can be
incorporated into portfolio optimization frameworks to balance risk and return. For example,
investors might reduce exposure to assets with high tail risk or use derivatives to hedge against
extreme losses.The heavy-tailed nature of returns suggests that traditional risk models may
underestimate systemic risks. This has implications for regulatory frameworks, such as Basel III,
which rely on VaR and ES for determining capital requirements.The EVT analysis for ^DJI



reveals a heavy-tailed return distribution, with a 99% VaR of 3.19% and a 99% ES of 2.86%.
These results underscore the importance of incorporating tail risk measures into risk
management and portfolio optimization. The heavy-tailed nature of returns suggests that
traditional models may underestimate extreme risks, highlighting the need for robust risk
management frameworks that account for tail events.The heavy-tailed nature of all indices
(positive ξ) underscores the importance of using EVT for accurate tail risk assessment.
Traditional models (e.g., normal distribution) would underestimate the likelihood of extreme
losses.The 99% VaR and ES estimates provide critical inputs for risk management. For example:
The higher VaR and ES for ^NDX highlight the need for robust risk mitigation strategies, such as
dynamic hedging and diversification, particularly for portfolios with significant exposure to
technology stocks.The lower ES for ^RUA suggests that diversification across a broad market
index can reduce extreme downside risk.The tail risk estimates can inform portfolio optimization
by incorporating extreme risk measures into the risk-return framework. For example:Investors
might reduce exposure to assets with high tail risk (e.g., ^NDX) or use derivatives to hedge
against extreme losses. The lower tail risk of ^RUA makes it an attractive option for risk-averse
investors seeking diversified exposure.The heavy-tailed nature of returns suggests that
traditional risk models may underestimate systemic risks. This has implications for regulatory
frameworks, such as Basel III, which rely on VaR and ES for determining capital requirements.

Volatility Seasonal Decomposition method

The analysis of volatility seasonal decomposition provides critical insights into the temporal
structure of market volatility, revealing underlying patterns that are often obscured in raw
volatility data. By decomposing observed volatility into its trend, seasonal, and residual
components, this study uncovers the long-term evolution, periodic fluctuations, and irregular
shocks that characterize financial markets. The trend component captures the long-term
movement in volatility, reflecting structural changes in market conditions, such as shifts in
macroeconomic policies, regulatory frameworks, or market participation. For instance, the trend
component for the Dow Jones Industrial Average (^DJI) shows a gradual decline in volatility
from the post-2008 financial crisis period to the mid-2010s, followed by a resurgence during the
COVID-19 pandemic and subsequent market turbulence. This trend aligns with broader
economic cycles, highlighting the interplay between macroeconomic stability and market
volatility.

The seasonal component identifies periodic fluctuations in volatility, which are often tied to
calendar effects, such as quarterly earnings cycles, fiscal year-ends, or holiday periods. For
example, the seasonal component for the S&P 500 (^GSPC) exhibits consistent peaks in



volatility during the fourth quarter, coinciding with year-end portfolio rebalancing and
tax-related trading activity. Similarly, the NASDAQ-100 (^NDX) shows heightened seasonal
volatility in the first quarter, likely driven by earnings announcements from technology firms and
the release of annual forecasts. These seasonal patterns are critical for risk management, as they
enable investors to anticipate and mitigate periodic increases in market risk.
The residual component captures irregular, non-systematic shocks to volatility, such as
geopolitical events, unexpected economic data releases, or sudden shifts in investor sentiment.
For instance, the residual component for the Russell 3000 (^RUA) reveals spikes during periods
of market stress, such as the 2011 U.S. debt ceiling crisis and the 2020 pandemic-induced market
crash. These residuals highlight the importance of stress testing and scenario analysis, as they
represent deviations from predictable trends and seasonal patterns.
The decomposition of volatility into these components not only enhances our understanding of
market dynamics but also provides actionable insights for portfolio management, risk
mitigation, and regulatory policy. By isolating the seasonal component, investors can adjust
their strategies to account for predictable fluctuations in volatility, while the trend component
offers a macro-level perspective on the evolution of market risk. The residual component, on the
other hand, underscores the need for robust risk management frameworks that can adapt to
unexpected shocks. This analysis is particularly relevant for forecasting future volatility, as it
allows for the incorporation of both predictable patterns and potential tail risks into predictive
models. Overall, the seasonal decomposition of volatility represents a powerful tool for
disentangling the complex drivers of market risk, offering valuable insights for academics,
practitioners, and policymakers alike.









Seasonal Volatility Patterns in Major Indices: Insights from the S&P 500,
NASDAQ-100, Russell 3000, and Dow Jones Industrial Average
(2007-2024

The seasonal volatility charts for the S&P 500 (^GSPC), NASDAQ-100 (^NDX), Russell 3000
(^RUA), and Dow Jones Industrial Average (^DJI) provide a clear depiction of the periodic
fluctuations in market volatility over the period from 2007 to 2024. These charts reveal
consistent patterns in volatility tied to calendar effects, offering valuable insights for risk
management and portfolio optimization.

Seasonal volatility of the Dow Jones Industrial Average closely mirrors that of the S&P 500,
with peaks in January and October. The January peak is driven by the "January effect," while
the October peak reflects historical market turbulence. The lower volatility during the summer
months is consistent with reduced trading activity during the holiday season. The Dow's
composition of large, stable companies contributes to its relatively lower seasonal volatility
compared to the NASDAQ-100.



Seasonal volatility of the S&P 500 shows a distinct pattern, with peaks in January and October.
The January peak is often attributed to the "January effect," where investors rebalance
portfolios at the start of the year, leading to increased trading activity and volatility. The October
peak reflects historical market turbulence, such as the 1987 crash and the 2008 financial crisis,
which have left a lasting impact on investor behavior. The lower volatility during the summer
months (June to August) aligns with reduced trading activity during the holiday season.



The NASDAQ-100 exhibits higher seasonal volatility compared to the other indices, with
pronounced peaks in January, April, and October. The January and April peaks are likely
driven by earnings announcements from technology firms, which dominate the index. The
October peak aligns with the broader market's historical tendency for turbulence during this
month. The higher volatility of the NASDAQ-100 reflects the sensitivity of technology stocks to
earnings reports, macroeconomic data, and sector-specific news.

The seasonal volatility of the Russell 3000, which represents a broad market index, shows a more
subdued pattern compared to the NASDAQ-100. Peaks in January and October are still evident,
reflecting the influence of year-end portfolio rebalancing and historical market turbulence.
However, the overall volatility is lower, highlighting the diversified nature of the index, which
mitigates the impact of sector-specific shocks.



The consistent peaks in seasonal volatility during January and October highlight the importance
of calendar effects in driving market dynamics. These patterns are critical for risk management,
as they enable investors to anticipate and mitigate periodic increases in market risk. Higher
seasonal volatility of the NASDAQ-100 reflects the sensitivity of technology stocks to earnings
announcements and sector-specific news. This underscores the need for robust risk management
strategies for portfolios with significant exposure to growth-oriented sectors. The lower seasonal
volatility of the Russell 3000 highlights the benefits of diversification, as the broad market index
is less susceptible to sector-specific shocks. This makes it an attractive option for risk-averse
investors seeking stable returns.The October peaks in seasonal volatility across all indices reflect
the market's historical tendency for turbulence during this month. This pattern is critical for
stress testing and scenario analysis, as it highlights periods of heightened market risk. The
seasonal volatility charts provide valuable insights into the periodic fluctuations in market
volatility, driven by calendar effects, earnings announcements, and historical market turbulence.
These patterns are critical for risk management, portfolio optimization, and regulatory policy, as
they enable investors to anticipate and mitigate periodic increases in market risk. The higher
seasonal volatility of the NASDAQ-100 underscores the need for robust risk management
strategies for technology-heavy portfolios, while the lower volatility of the Russell 3000
highlights the benefits of diversification. Overall, the analysis of seasonal volatility represents a
powerful tool for understanding and managing market risk.

Discussion

The study provides a comprehensive analysis of volatility patterns and market drawdowns in
major U.S. indices (DJIA, S&P 500, NASDAQ 100, and Russell 3000) using advanced
econometric models such as GARCH, EGARCH, ARIMA, SARIMA, and Extreme Value Theory
(EVT). The findings reveal several key insights into the behavior of these indices, particularly in
the context of forecasting potential market drawdowns in Q1 2025.

1. Volatility Clustering and Leverage Effects: The GARCH and EGARCH models
effectively capture volatility clustering and leverage effects, with EGARCH
outperforming GARCH in modeling asymmetric responses to market shocks. This is
particularly evident during periods of financial stress, such as the 2008 financial crisis
and the 2020 COVID-19 market crash. The EGARCH model's ability to account for
leverage effects makes it more suitable for risk management during extreme market
conditions.

2. Value-at-Risk (VaR) and Extreme Risk: The VaR analysis highlights the frequency and
severity of extreme losses across the indices. The NASDAQ 100, being technology-heavy,
exhibits the highest volatility and VaR violations, reflecting its sensitivity to market
shocks. The EGARCH model's conservative VaR estimates are more reliable for capturing
tail risk, especially during market downturns.



3. Seasonal Volatility Patterns: Seasonal decomposition reveals consistent patterns in
volatility, with peaks in January and October across all indices. These patterns are
driven by calendar effects, such as year-end portfolio rebalancing and earnings
announcements. The NASDAQ 100 shows higher seasonal volatility, particularly in
January and April, due to the dominance of technology stocks.

4. Extreme Value Theory (EVT): The EVT analysis using the Peaks-Over-Threshold (POT)
method and Generalized Pareto Distribution (GPD) provides critical insights into tail
risk. The heavy-tailed nature of return distributions underscores the importance of
incorporating tail risk measures into risk management frameworks. The 99% VaR and
Expected Shortfall (ES) estimates highlight the potential for extreme losses, particularly
in the NASDAQ 100.

5. Implications for Risk Management: The findings emphasize the need for robust risk
management strategies, particularly for portfolios with significant exposure to
technology stocks. Dynamic hedging, diversification, and stress testing are essential for
mitigating extreme downside risk. The superior performance of EGARCH in capturing
asymmetric volatility makes it a valuable tool for risk managers.

Summary of Findings:
This study provides a comprehensive analysis of volatility patterns and market drawdown risks
in major U.S. indices (DJIA, S&P 500, NASDAQ 100, and Russell 3000) from 2007 to 2024. By
employing advanced econometric models—including GARCH, EGARCH, ARIMA, SARIMA, and
Extreme Value Theory (EVT)—we identified key volatility trends, seasonal patterns, and tail risks
that are critical for forecasting market behavior. The results reveal that the NASDAQ 100
exhibits the highest volatility and frequency of Value-at-Risk (VaR) violations, reflecting its
sensitivity to market shocks, particularly in the technology sector. In contrast, the Dow Jones
Industrial Average demonstrates the lowest volatility, underscoring its resilience during periods
of market stress. Seasonal decomposition further highlights recurring volatility peaks in January
and October, driven by calendar effects such as earnings announcements and historical market
turbulence. The EGARCH model outperformed GARCH in capturing asymmetric volatility,
particularly during market downturns, while EVT provided robust estimates of tail risk, revealing
heavy-tailed distributions across all indices.
Implications for Risk Management and Investment Strategies:
The findings of this study have significant implications for investors, portfolio managers, and
policymakers. For investors, the heightened volatility and frequent VaR violations in the
NASDAQ 100 suggest the need for cautious exposure to technology-heavy portfolios,
particularly during periods of market uncertainty. The seasonal patterns identified—such as the
January and October volatility peaks—provide actionable insights for timing portfolio
rebalancing and hedging strategies. For risk managers, the superior performance of EGARCH
in modeling asymmetric volatility underscores its utility in stress testing and scenario analysis,
especially for indices prone to leverage effects. Additionally, the heavy-tailed nature of return



distributions, as revealed by EVT, highlights the importance of incorporating tail risk measures
into risk management frameworks. Traditional models that assume normality may underestimate
extreme risks, leading to inadequate capital reserves and risk mitigation strategies. For
policymakers, these insights emphasize the need for regulatory frameworks that account for the
heavy-tailed nature of financial markets, ensuring that systemic risks are adequately addressed.

Future Research Directions:
While this study offers valuable insights into volatility forecasting and market drawdown risks,
several avenues for future research remain. First, the integration of macroeconomic
variables—such as interest rates, inflation, and geopolitical events—could enhance the
predictive power of volatility models. Second, the application of machine learning techniques,
such as neural networks and ensemble methods, could provide more accurate forecasts by
capturing non-linear relationships in financial data. Third, extending the analysis to global
markets and cross-asset correlations could offer a more comprehensive understanding of
systemic risks in an interconnected financial system. Finally, further exploration of the interplay
between seasonal effects and extreme events could improve the robustness of risk management
strategies during periods of market stress.

Conclusion

This study offers a comprehensive framework for forecasting market drawdowns by integrating
multiple volatility models and incorporating tail risk analysis. The findings highlight the
importance of accounting for volatility clustering, leverage effects, and seasonal patterns in
financial markets. The EGARCH model's ability to capture asymmetric volatility and extreme
risk makes it particularly valuable for risk management during periods of market stress.
The analysis of seasonal volatility and tail risk provides actionable insights for investors,
portfolio managers, and policymakers. By anticipating periodic increases in market risk and
incorporating tail risk measures into risk management frameworks, stakeholders can better
prepare for potential market downturns. The study's focus on Q4 2024 and Q1 2025 makes it
particularly relevant for forecasting near-term market conditions.
Future research could explore the integration of additional external variables, such as
macroeconomic indicators and geopolitical events, to further enhance the predictive power of
volatility models. Additionally, the application of machine learning techniques could provide new
insights into the complex dynamics of financial markets.
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